skip to main content


Search for: All records

Creators/Authors contains: "Jiang, Zhanhong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose a novel policy gradient method for multi-agent reinforcement learning, which leverages two different variance-reduction techniques and does not require large batches over iterations. Specifically, we propose a momentum-based decentralized policy gradient tracking (MDPGT) where a new momentum-based variance reduction technique is used to approximate the local policy gradient surrogate with importance sampling, and an intermediate parameter is adopted to track two consecutive policy gradient surrogates. MDPGT provably achieves the best available sample complexity of O(N -1 e -3) for converging to an e-stationary point of the global average of N local performance functions (possibly nonconcave). This outperforms the state-of-the-art sample complexity in decentralized model-free reinforcement learning and when initialized with a single trajectory, the sample complexity matches those obtained by the existing decentralized policy gradient methods. We further validate the theoretical claim for the Gaussian policy function. When the required error tolerance e is small enough, MDPGT leads to a linear speed up, which has been previously established in decentralized stochastic optimization, but not for reinforcement learning. Lastly, we provide empirical results on a multi-agent reinforcement learning benchmark environment to support our theoretical findings. 
    more » « less
  2. In distributed machine learning, where agents collaboratively learn from diverse private data sets, there is a fundamental tension between consensus and optimality . In this paper, we build on recent algorithmic progresses in distributed deep learning to explore various consensus-optimality trade-offs over a fixed communication topology. First, we propose the incremental consensus -based distributed stochastic gradient descent (i-CDSGD) algorithm, which involves multiple consensus steps (where each agent communicates information with its neighbors) within each SGD iteration. Second, we propose the generalized consensus -based distributed SGD (g-CDSGD) algorithm that enables us to navigate the full spectrum from complete consensus (all agents agree) to complete disagreement (each agent converges to individual model parameters). We analytically establish convergence of the proposed algorithms for strongly convex and nonconvex objective functions; we also analyze the momentum variants of the algorithms for the strongly convex case. We support our algorithms via numerical experiments, and demonstrate significant improvements over existing methods for collaborative deep learning. 
    more » « less
  3. Abstract

    Data-driven analysis and monitoring of complex dynamical systems have been gaining popularity due to various reasons like ubiquitous sensing and advanced computation capabilities. A key rationale is that such systems inherently have high dimensionality and feature complex subsystem interactions due to which majority of the first-principle based methods become insufficient. We explore the family of a recently proposed probabilistic graphical modeling technique, called spatiotemporal pattern network (STPN) in order to capture the Granger causal relationships among observations in a dynamical system. We also show that this technique can be used for anomaly detection and root-cause analysis for real-life dynamical systems. In this context, we introduce the notion of Granger-STPN (G-STPN) inspired by the notion of Granger causality and introduce a new nonparametric technique to detect causality among dynamical systems observations. We experimentally validate our framework for detecting anomalies and analyzing root causes in a robotic arm platform and obtain superior results compared to when other causality metrics were used in previous frameworks.

     
    more » « less